
❑Motivation

▪ Early diagnosis of Neuro-cognitive Disorder (NCD), e.g. 

Alzheimer Disease, is crucial for timely treatment and 

intervention 

▪ Automated speech technologies for large scale screening

▪ Most previous works rely on manually generated transcripts

▪ Automatic speech recognition (ASR) systems targeting elderly 

speech is essential 

❑Challenge

▪ Large mismatch between normal speech and elderly speech with 

increased voice perturbation, articulatory imprecision, etc.

▪ Lack of large amounts of elderly speech recordings for NCD

❑Our Work: CUHK Elderly Speech Recognition System

▪ ASR system for automatic NCD tests built on the DementiaBank

Pitt corpus incorporating a series of  modelling techniques (Fig. 1)

o Re-segmentation, augmentation, adaptation of audio data

o Transformer language model combined with 4-gram

▪ Evaluation with word error rate (WER) and NCD detection results 
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1. Introduction

❑Audio Data from DementiaBank Pitt corpus (~ 33 hrs)

▪ Containing Interview recordings between 292 elderly participants 

and their investigators as one of the largest public dataset for NCD

▪ Partitioned based on the public ADReSS corpus for consistency

❑Text Corpora for Language Model (vocabulary of ~3.6k words )

▪ Small 4-gram built with DementiaBank Pitt corpus only

▪ Large 4-gram built on the transcriptions from LDC Switchboard 

and Fisher corpus, LDA Gigaword corpus, other related corpora 

(Holland, Kempler, Lanzi) from DementiaBank in addition to Pitt

❑Baseline System

▪ Lattice-free maximum mutual information ((LF-MMI) trained 

factored time delay neural network (TDNN) acoustic models

2. Task Description

❑Audio Re-segmentation 

▪ GMM-HMM model (2k triphone states with 32 Gaussian per state) was used for 

alignment, then excessive silences (>200ms) at the beginning or at the end were 

removed and the utterances with long internal silence (>1s) were split

▪ About 40% of the data was removed as shown in Table. 1

▪ WER obtained from the resulting system (Sys.5) compared to the baseline system 

(Sys. 4) in Table. 2 

o 1.87% overall reduction 

o 5.88% reduction for partici-

pants in the evaluation set

❑Data Augmentation 

▪ Speed perturbation based data augmentation

o Speaker independent factors for participant {0.9, 1.0, 1.1}

o Speaker dependent factors for investigator {0.84, 0.95, 1.0, 1.08, 1.27}

▪ The training dataset was expanded to about 59 hrs from 15.74 hrs by a factor of 4

▪ Absolute WER reduction from the system before augmentation (Sys. 5) to the 

resulting system (Sys. 6) in Table. 2

o 2.94% overall reduction 

o 2% reduction for participants in the evaluation set

❑Cross-domain Adaptation 

▪ 1000-hr LibriSpeech corpus trained LF-MMI TDNN was Cross-domain Bayesian 

adapted to the 59-hr augmented Pitt data 

▪ Resulting System (Sys. 7) decreased overall WER by 1.04% absolute (1.7% 

absolute for participants in evaluation set) as shown in Table. 2 compared to the 

system without adaptation (Sys. 6)

❑Speaker adaptation

▪ Learning Hidden Unit Contribution (LHUC) speaker adaptation with Bayesian 

estimation to account for the model uncertainty caused by the limited data

▪ Absolute WER reduction obtained from the resulting systems compared to the 

system without adaptation (Sys. 6) in Table. 2

o 2.7% (2.89% for participants in eval set) with speaker adaptation (Sys. 8)

o +0.3% for participants in eval set combined with domain adaptation (Sys. 9) 

❑Language Model (LM)

▪ Transformer LM, trained on 2.4M-word transcriptions from Pitt, Switchboard and 

Fisher and then Bayesian adapted to the Pitt transcripts, before being used to 

rescore the 4-gram LM decoded output

▪ Resulting System (Sys.10) further reduced the overall WER by 0.92% absolute 

(0.65% absolute for participants in evaluation set) compared to Sys.9 in Table. 2

3. ASR System Development 

❑ASR Performance 

❑NCD Detection Performance

▪ NCD Detection Task

o Textual features extracted from the baseline or best recognition outputs (Sys. 4 

and Sys. 10) for Pitt evaluation set, including 

✓ 1035-dim TF-IDF features (sparse) encoding word frequency information

✓ 768-dim BERT based features (dense) may capturing additional long-range 

contextual information

o Support Vector Machines (SVM) based detection system

▪ Detection Results (Table. 3)

o Detection accuracy improved from 0.79 to 0.88 with WER reduced from 

44.89% to 33.17% for participants in evaluation set using BERT based features

o The best ASR system outputs (Sys. 10) gave NCD detection accuracy 

comparable to that obtained using manual (ground truth) speech transcription

4. System Performance 

Augmented Training Set (~59 hrs)

Original Training data (~15.7 hrs)

Speaker Independent Augmented 

(~20 hrs)

Speaker Dependent Augmented 

(~24 hrs)

❑Tailored ASR system for elderly speech for NCD detection

▪ Overall WER reduction of 11.72% absolute (26.11% relative) for elderly 

participants in evaluation set was obtained in system development

▪ Comparable NCD detection results to that using manual transcription

❑Future Plan

▪ Analysis on individual ASR modelling techniques’ effect on NCD detection

▪ Tighter integration between the ASR system and NCD detection model

4. Conclusion
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